HYDRONIC HEATING & COOLING DESIGN - ESSENTIAL TIPS & RULES OF THUMB

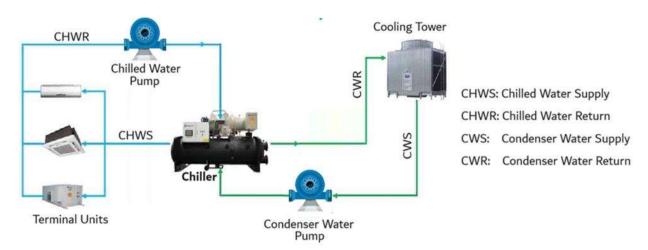
Ever wondered how warmth or coolness reaches your air vents! It all comes from the hidden network of pipes – the hydronic system, the circulatory system of your HVAC.

This 8-hour course is designed to provide you with the fundamental knowledge and practical insights necessary for mastering hydronic system design. Key topics include:

- a. Fundamental Principles: Discover how water transfers heat and coolness throughout a building.
- b. System Design and Sizing: Learn how to design and size hydronic systems, including piping networks, pumps, and heat exchangers.
- c. Component Selection: Gain expertise in selecting the right components, such as pumps, valves, and control systems, to optimize system performance.
- d. Distribution Schemes: Explore constant volume, variable volume, and primary-secondary systems.

You can find **Key Rules of Thumb in Annexure - 2** for quick and easy reference. These guidelines, metrics, and thumb rules are based on sound engineering practices and the author's experience, but they may vary depending on operating conditions and other factors. This document is a live resource that will be updated regularly as new information becomes available.

Read to explore hydronic system distribution for cooling and heating. Let's get started!


Important Note: Two additional modules focusing on the Efficient Cooling with Chillers (Module #8) and heat rejection options (Module #10) are available in HVAC Hacks series. By reading both these modules, you'll gain a comprehensive understanding of complete chilled water system design solutions for large, centralized HVAC applications.

CHAPTER - 1: HYDRONIC SYSTEMS

Hydronic systems are a smart way to heat and cool buildings. They use water or a special waterantifreeze mix to move heat around. Think of it like a plumbing system, but for heating and cooling. Water is heated or cooled in a central unit, then pumped through pipes to different parts of the building. This provides comfortable temperatures in various rooms, making it a flexible and efficient solution for climate control.

1.1 Hydronic Cooling Overview

In a hydronic cooling system, chilled water is circulated in a closed loop from chillers to air handling units (AHUs), fan coil units (FCUs), or terminal units. The cooling effect is achieved through heat transfer between the warmer indoor air and the colder circulating water. It's a reliable and efficient method for cooling large spaces while minimizing energy and resource consumption.

Figure 1. Hydronic Cooling System

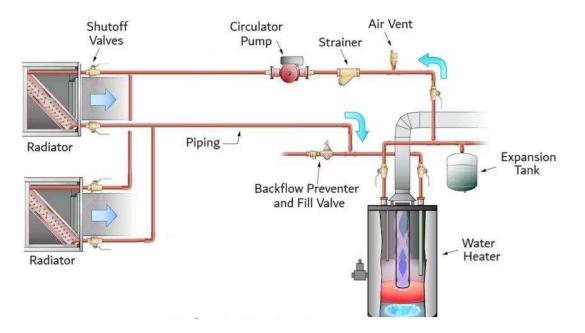

	Hydronic Cooling Systems	Rules of Thumb
\bigcirc	Chilled water flow rate	~2.4 GPM per ton at 10°F Δ T. Reduces with higher Δ T.
0	Chilled water supply temperature	42°F to 50°F
0	Chilled water return temperature	10°F, 12°F, 16°F or 18°F higher than the chilled water supply temperature
\bigcirc	Chiller temperature range (ΔT)	10°F (typical), can be 12°F, 16°F or 18°F

Table 1. Hydronic Cooling System - Benchmark Values and Rules of Thumb

	Hydronic Cooling Systems	Rules of Thumb
0	Condenser water flow rate	~3 GPM per ton at 10°F Δ T. Reduces with higher Δ T.
0	Condenser water supply (inlet) temperature	85°F (as per AHRI 550/590 performance standards)
0	Condenser water leaving temperature	95°F (as per AHRI 550/590 performance standards)
0	Condenser temperature range (ΔT)	10°F (typical), can be 12°F
0	Cooling tower water flow rate and	Matches with respective condenser parameters
	inlet/outlet temperatures	
0	Energy Efficiency Ratio (EER)	Aim for 12 or higher

1.2 Hydronic Heating Overview

Hydronic heating system uses water to move heat from where it is produced to where it is needed. This system uses a simple gas-fired water heater or boiler. Its purpose is to heat and store the water used throughout the building. Usually, a water heater only heats water for potable domestic use, but in this case, hot water is conveyed through the distribution piping, and finally released into a heated space through radiators, baseboard heaters, or radiant floor systems.

Figure 2. Hydronic Heating System

Table 2. Hydronic Heating System: Benchmark Values and Rules of Thumb

	Hydronic Heating Systems	Rules of Thumb
0	Temperature Difference (ΔT)	20°F to 30°F
	across Boiler	
C	Flowrate	1 GPM per 10,000 BTU
0	Hot Water Supply Temperature	140°F to 180°F
C	System Efficiency	Modern condensing boilers: 90% or higher

1.3 Advantages of Hydronic System

Hydronic HVAC systems provide superior space savings, energy efficiency, precise temperature control, and comfortable indoor climate compared to traditional forced-air systems.

Table 3. Reasons for Selecting Hydronic System

	Benefits of Hydronic Systems	Rules of Thumb	
	Space Efficiency	Water stores 4 times more thermal energy than air and has a	
		much smaller volume due to its higher density. It moves far	
		easier in small pipes compared to bulky air ducts saving	
		valuable space for modern building projects.	
		Example: 1-2" piping for 2.4 GPM/Ton vs. 8-12" ducts for 400	
		CFM/Ton.	
0	Energy Efficiency	Water's higher energy density allows for efficient distribution and lower power consumption.	
0	Enhanced Comfort	Eliminates drafts, hot/cold spots, airborne particles.	
	Flexibility & Scalability	Easily modified, ducted/ductless designs, adaptable to long-	
\mathbf{U}		distance distribution with appropriately sized circulator pumps.	
0	Durability	Up to 25-year lifespan; dependent on installation, maintenance.	
	Centralized Control	Independent zone control; simplified maintenance and	
		operation.	

These features make hydronic systems an attractive option for modern building design, providing comfort, efficiency, and sustainability.

Example: Space Saving Advantage of Hydronic System in a Tall Building

Consider a 100-floor building designed with a forced air system. Switching to a hydronic system can result in significant advantages:

- a. Ductless Design: Hydronic systems allow for ductless units on each floor, eliminating the need for extensive ductwork. This creates a cleaner, sleeker aesthetic and frees up even more space within each floor plan.
- b. Reduced Floor Height: Hydronic piping is less bulky than air ducts, allowing for a reduced floor height. This might seem like a minor adjustment, but in a 100-story building, even saving 6 inches (½ foot) per floor translates to 5 extra floors within the same building height.
- c. More Floors, More Revenue: Additional floors mean increased usable space and rental income, leading to a more profitable design. This maximizes valuable real estate and offers greater flexibility for future tenants.

1.4 Key Hydronic Components

A hydronic system comprises various components that must work together seamlessly to ensure proper functionality. These components typically include primary equipment (such as heaters, boilers, and chillers), pumps, piping, fittings, terminal units, coils, and control valves. Below is a brief overview of the key components involved:

Table 4. Key Components of Hydronic System

Component	Function	Types	Rules of Thumb
Chillers (Chilled	Produce chilled water for	Reciprocating, scroll, screw,	Size to handle peak load +
Water System)	building cooling.	centrifugal, absorption	safety margin and diversity.
		chillers.	
			1 Ton = 12,000 BTU/hr.
Boilers (Hot	Heats water for space	Gas-fired, oil-fired, electric,	Size to meet design heating
Water System)	heating.	condensing boilers.	load, considering climate,
			building size, and insulation
			levels.
Pumps/Circulators	Circulate chilled or hot	Centrifugal, inline, end-	Size based on water flowrate
	water.	suction, split-case pumps.	(GPM) and pressure head
			(feet).
Piping	Distributes hot or chilled	Carbon steel, galvanized	Size pipes based on flowrate
	water.	steel, copper, PEX, CPVC.	and pressure drop. Typical
			water velocity 4-8 ft/s and
			pressure drop <4 ft of water

Component	Function	Types	Rules of Thumb
			per 100 ft of pipe.
Valves	Control fluid flow and	Ball, gate, globe, check,	Select valves to minimize
	pressure.	balancing, control valves.	pressure drop. Use
			balancing valves for even
			water distribution.
Terminal Units	Deliver heating/cooling to	Radiators, convectors, fan	Size based on
(AHUs and FCUs)	building spaces.	coil units, induction units,	heating/cooling load of each
		radiant floor panels, VAV	zone, typically using 30-60
		boxes, air handling units	BTU per square foot.
		(AHUs).	
Expansion Tanks	Accommodate thermal	Diaphragm, bladder type.	Size to 4% of total system
	expansion/ contraction.		water volume.
Air Separators	Remove air from water	Hydronic separators, micro-	Size air separators based on
	distribution loop.	bubble separators.	system flowrate and water
			temperature.
Chemical Feed	Introduces treatment	Direct injection feeders,	Size/select based on
Water Treatment	chemicals to prevent	chemical feed pots.	chemical type and dosage
	corrosion/scaling/microbial		rate.
	growth.		
Blowdown	Removes concentrated water	Automatic or manual	Set blowdown frequency to
System	from cooling loop.	systems.	maintain water quality,
			preventing buildup of solids
			and contaminants.
Monitoring and	Monitors water parameters	Automated systems with	Proactive adjustments to
Control	(pH, conductivity).	sensors and controllers.	chemical feed rates and
			blowdown schedules

These components work together to provide effective temperature control for both building environments and industrial processes.

1.5 Hydronic System Challenges

Hydronic HVAC systems, though energy-efficient and versatile, have certain challenges. They typically have higher upfront costs for equipment and installation, as well as complex design requirements for fresh air ventilation. They increase the risk of water damage due to leaks, which are often hard to detect and costly to repair. Maintenance tends to be labour-intensive and expensive. Noise from pumps, pipes, and terminal units can be an issue. Finally, hydronic systems may not suit all building types or climates, especially humid or extreme environments.

Table 5. Hydronic Systems Challenges

	Challenges	Rules of Thumb	
	Upfront Costs	Expect 10-20% higher initial investment due to complex piping,	
$\mathbf{\nabla}$		controls, and terminal units compared to forced-air systems.	
	Complex Design/Installation	Installation costs are 10-20% higher due to additional piping	
		electrical, and control connections.	
	Separate Ventilation System	Requires dedicated ventilation systems in compliance with	
		ASHRAE 62.1 to ensure fresh air supply and good indoor air	
		quality (IAQ).	
3	Environmental Control	Slower response times for heating/cooling; gradual temperature	
		changes.	
	Limited Cooling	Cooling systems need careful design to avoid condensation issu	
		in humid climates; no such issue for heating in cold climates.	
	Leak and Water Damage Risks	Leak detection systems are essential, particularly in conceale	
		piping areas, to prevent water damage.	
	More Maintenance	Regular maintenance is required due to numerous terminal units,	
		often located in occupied spaces.	
0	Noise Issues	Implement noise control measures and ensure proper sizing an	
		placement of terminal units to reduce noise in occupied spaces.	
	Humidity and Extreme Temps	Use specialized materials and designs to handle high-humidity	
		environments or extreme temperatures effectively.	

Nevertheless, despite the challenges hydronic systems may face, they provide significant benefits when carefully designed and implemented.

This Module #9 will guide you through the hydronic design fundamentals, selecting the right size pumps and piping for high-performance hydronic cooling systems. Note that the principles behind hydronic cooling and heating are similar.

You need to purchase this course to continue viewing this document.